NC3 链表中环的入口结点

  算法   4分钟   717浏览   0评论

题目链接:https://www.nowcoder.com/practice/253d2c59ec3e4bc68da16833f79a38e4

题目描述

给一个长度为n链表,若其中包含环,请找出该链表的环的入口结点,否则,返回null。

数据范围: n≤10000,1<=结点值<=10000

要求:空间复杂度 O(1),时间复杂度 O(n)

例如,输入{1,2},{3,4,5}时,对应的环形链表如下图所示:

可以看到环的入口结点的结点值为3,所以返回结点值为3的结点。

输入描述:

输入分为2段,第一段是入环前的链表部分,第二段是链表环的部分,后台会根据第二段是否为空将这两段组装成一个无环或者有环单链表

返回值描述:

返回链表的环的入口结点即可,我们后台程序会打印这个结点对应的结点值;若没有,则返回对应编程语言的空结点即可。

示例 1:

输入:{1,2},{3,4,5}
返回值:3
说明:返回环形链表入口结点,我们后台程序会打印该环形链表入口结点对应的结点值,即3

示例 2:

输入:{1},{}
返回值:"null"
说明:没有环,返回对应编程语言的空结点,后台程序会打印"null"

示例 3:

输入:{1},{2}
返回值:2
说明:环的部分只有一个结点,所以返回该环形链表入口结点,后台程序打印该结点对应的结点值,即2

解题代码

import java.util.*;
/*
 public class ListNode {
    int val;
    ListNode next = null;

    ListNode(int val) {
        this.val = val;
    }
}
*/
public class Solution {
    //判断有没有环,返回相遇的地方
    public ListNode hasCycle(ListNode head) {
        //先判断链表为空的情况
        if (head == null)
            return null;
        //快慢双指针
        ListNode fast = head;
        ListNode slow = head;
        //如果没环快指针会先到链表尾
        while (fast != null && fast.next != null) {
            //快指针移动两步
            fast = fast.next.next;
            //慢指针移动一步
            slow = slow.next;
            //相遇则有环,返回相遇的位置
            if (fast == slow)
                return slow;
        }
        //到末尾说明没有环,返回null
        return null;
    }

    public ListNode EntryNodeOfLoop(ListNode pHead) {
        ListNode slow = hasCycle(pHead);
        //没有环
        if (slow == null)
            return null;
        //快指针回到表头
        ListNode fast = pHead;
        //再次相遇即是环入口
        while (fast != slow) {
            fast = fast.next;
            slow = slow.next;
        }
        return slow;
    }
}

如果你觉得文章对你有帮助,那就请作者喝杯咖啡吧☕
微信
支付宝
😀
😃
😄
😁
😆
😅
🤣
😂
🙂
🙃
😉
😊
😇
🥰
😍
🤩
😘
😗
☺️
😚
😙
🥲
😋
😛
😜
🤪
😝
🤑
🤗
🤭
🫢
🫣
🤫
🤔
🤨
😐
😑
😶
😏
😒
🙄
😬
😮‍💨
🤤
😪
😴
😷
🤒
🤕
🤢
🤮
🤧
🥵
🥶
🥴
😵
😵‍💫
🤯
🥳
🥺
😠
😡
🤬
🤯
😈
👿
💀
☠️
💩
👻
👽
👾
🤖
😺
😸
😹
😻
😼
😽
🙀
😿
😾
👋
🤚
🖐️
✋️
🖖
🫱
🫲
🫳
🫴
🫷
🫸
👌
🤌
🤏
✌️
🤞
🫰
🤟
🤘
🤙
👈️
👉️
👆️
🖕
👇️
☝️
🫵
👍️
👎️
✊️
👊
🤛
🤜
👏
🙌
👐
🤲
🤝
🙏
✍️
💅
🤳
💪
🦾
🦿
🦵
🦶
👂
🦻
👃
👶
👧
🧒
👦
👩
🧑
👨
👩‍🦱
👨‍🦱
👩‍🦰
👨‍🦰
👱‍♀️
👱‍♂️
👩‍🦳
👨‍🦳
👩‍🦲
👨‍🦲
🧔‍♀️
🧔‍♂️
👵
🧓
👴
👲
👳‍♀️
👳‍♂️
🧕
👮‍♀️
👮‍♂️
👷‍♀️
👷‍♂️
💂‍♀️
💂‍♂️
🕵️‍♀️
🕵️‍♂️
👩‍⚕️
👨‍⚕️
👩‍🌾
👨‍🌾
👩‍🍳
👨‍🍳
🐶
🐱
🐭
🐹
🐰
🦊
🐻
🐼
🐨
🐯
🦁
🐮
🐷
🐸
🐵
🐔
🐧
🐦
🦅
🦉
🐴
🦄
🐝
🪲
🐞
🦋
🐢
🐍
🦖
🦕
🐬
🦭
🐳
🐋
🦈
🐙
🦑
🦀
🦞
🦐
🐚
🐌
🦋
🐛
🦟
🪰
🪱
🦗
🕷️
🕸️
🦂
🐢
🐍
🦎
🦖
🦕
🐊
🐢
🐉
🦕
🦖
🐘
🦏
🦛
🐪
🐫
🦒
🦘
🦬
🐃
🐂
🐄
🐎
🐖
🐏
🐑
🐐
🦌
🐕
🐩
🦮
🐕‍🦺
🐈
🐈‍⬛
🐓
🦃
🦚
🦜
🦢
🦩
🕊️
🐇
🦝
🦨
🦡
🦫
🦦
🦥
🐁
🐀
🐿️
🦔
🌵
🎄
🌲
🌳
🌴
🌱
🌿
☘️
🍀
🎍
🎋
🍃
🍂
🍁
🍄
🌾
💐
🌷
🌹
🥀
🌺
🌸
🌼
🌻
🌞
🌝
🌛
🌜
🌚
🌕
🌖
🌗
🌘
🌑
🌒
🌓
🌔
🌙
🌎
🌍
🌏
🪐
💫
🌟
🔥
💥
☄️
☀️
🌤️
🌥️
🌦️
🌧️
⛈️
🌩️
🌨️
❄️
☃️
🌬️
💨
💧
💦
🌊
🍇
🍈
🍉
🍊
🍋
🍌
🍍
🥭
🍎
🍏
🍐
🍑
🍒
🍓
🥝
🍅
🥥
🥑
🍆
🥔
🥕
🌽
🌶️
🥒
🥬
🥦
🧄
🧅
🍄
🥜
🍞
🥐
🥖
🥨
🥯
🥞
🧇
🧀
🍖
🍗
🥩
🥓
🍔
🍟
🍕
🌭
🥪
🌮
🌯
🥙
🧆
🥚
🍳
🥘
🍲
🥣
🥗
🍿
🧈
🧂
🥫
🍱
🍘
🍙
🍚
🍛
🍜
🍝
🍠
🍢
🍣
🍤
🍥
🥮
🍡
🥟
🥠
🥡
🦪
🍦
🍧
🍨
🍩
🍪
🎂
🍰
🧁
🥧
🍫
🍬
🍭
🍮
🍯
🍼
🥛
🍵
🍶
🍾
🍷
🍸
🍹
🍺
🍻
🥂
🥃
🥤
🧃
🧉
🧊
🗺️
🏔️
⛰️
🌋
🏕️
🏖️
🏜️
🏝️
🏞️
🏟️
🏛️
🏗️
🏘️
🏙️
🏚️
🏠
🏡
🏢
🏣
🏤
🏥
🏦
🏨
🏩
🏪
🏫
🏬
🏭
🏯
🏰
💒
🗼
🗽
🕌
🛕
🕍
⛩️
🕋
🌁
🌃
🏙️
🌄
🌅
🌆
🌇
🌉
🎠
🎡
🎢
💈
🎪
🚂
🚃
🚄
🚅
🚆
🚇
🚈
🚉
🚊
🚝
🚞
🚋
🚌
🚍
🚎
🚐
🚑
🚒
🚓
🚔
🚕
🚖
🚗
🚘
🚙
🚚
🚛
🚜
🏎️
🏍️
🛵
🦽
🦼
🛺
🚲
🛴
🛹
🚏
🛣️
🛤️
🛢️
🚨
🚥
🚦
🚧
🛶
🚤
🛳️
⛴️
🛥️
🚢
✈️
🛩️
🛫
🛬
🪂
💺
🚁
🚟
🚠
🚡
🛰️
🚀
🛸
🧳
📱
💻
⌨️
🖥️
🖨️
🖱️
🖲️
💽
💾
📀
📼
🔍
🔎
💡
🔦
🏮
📔
📕
📖
📗
📘
📙
📚
📓
📒
📃
📜
📄
📰
🗞️
📑
🔖
🏷️
💰
💴
💵
💶
💷
💸
💳
🧾
✉️
📧
📨
📩
📤
📥
📦
📫
📪
📬
📭
📮
🗳️
✏️
✒️
🖋️
🖊️
🖌️
🖍️
📝
📁
📂
🗂️
📅
📆
🗒️
🗓️
📇
📈
📉
📊
📋
📌
📍
📎
🖇️
📏
📐
✂️
🗃️
🗄️
🗑️
🔒
🔓
🔏
🔐
🔑
🗝️
🔨
🪓
⛏️
⚒️
🛠️
🗡️
⚔️
🔫
🏹
🛡️
🔧
🔩
⚙️
🗜️
⚗️
🧪
🧫
🧬
🔬
🔭
📡
💉
🩸
💊
🩹
🩺
🚪
🛏️
🛋️
🪑
🚽
🚿
🛁
🧴
🧷
🧹
🧺
🧻
🧼
🧽
🧯
🛒
🚬
⚰️
⚱️
🗿
🏧
🚮
🚰
🚹
🚺
🚻
🚼
🚾
🛂
🛃
🛄
🛅
⚠️
🚸
🚫
🚳
🚭
🚯
🚱
🚷
📵
🔞
☢️
☣️
❤️
🧡
💛
💚
💙
💜
🖤
💔
❣️
💕
💞
💓
💗
💖
💘
💝
💟
☮️
✝️
☪️
🕉️
☸️
✡️
🔯
🕎
☯️
☦️
🛐
🆔
⚛️
🉑
☢️
☣️
📴
📳
🈶
🈚
🈸
🈺
🈷️
✴️
🆚
💮
🉐
㊙️
㊗️
🈴
🈵
🈹
🈲
🅰️
🅱️
🆎
🆑
🅾️
🆘
🛑
💢
💯
💠
♨️
🚷
🚯
🚳
🚱
🔞
📵
🚭
‼️
⁉️
🔅
🔆
🔱
⚜️
〽️
⚠️
🚸
🔰
♻️
🈯
💹
❇️
✳️
🌐
💠
Ⓜ️
🌀
💤
🏧
🚾
🅿️
🈳
🈂️
🛂
🛃
🛄
🛅
  0 条评论