浅谈分布式唯一ID生成方案

  Java   19分钟   1134浏览   2评论

1. 分布式唯一 ID 特性

在业务开发中,会存在大量的场景都需要唯一 ID 来进行标识。比如,用户需要唯一身份标识;商品需要唯一标识;消息需要唯一标识;事件需要唯一标识等等。尤其是在分布式场景下,业务会更加依赖唯一 ID。

分布式唯一 ID 的特性如下:

  • 全局唯一:必须保证生成的 ID 是全局性唯一的,这是分布式 ID 的基本要求;
  • 有序性:生成的 ID 需要按照某种规则有序,便于数据库的写入和排序操作;
  • 可用性:需要保证高并发下的可用性。除了对 ID 号码自身的要求,业务还对 ID 生成系统的可用性要求极高;
  • 自主性:分布式环境下不依赖中心认证即可自行生成 ID;
  • 安全性:不暴露系统和业务的信息。在一些业务场景下,会需要 ID 无规则或者不规则。

2. 常用分布式唯一 ID 生成方案

2.1. UUID

UUID(Universally Unique Identifier,即通用唯一标识码)算法的目的是生成某种形式的全局唯一 ID 来标识系统中的任一元素,尤其是在分布式环境下,UUID 可以不依赖中心认证即可自动生成全局唯一 ID。

UUID 的标准形式为 32 个十六进制数组成的字符串,且分割为五个部分,例如:467e8542-2275-4163-95d6-7adc205580a9。

基于使用场景的不同,会存在以下几个不同版本的 UUID 以供使用,如下所示:

  • 基于时间的 UUID:主要依赖当前的时间戳和机器 mac 地址。优势是能基本保证全球唯一性,缺点是由于使用了 mac 地址,会暴露 mac 地址和生成时间;
  • 分布式安全的 UUID:将基于时间的 UUID 算法中的时间戳前四位替换为 POSIX 的 UID 或 GID。优势是能保证全球唯一性,缺点是很少使用,常用库基本没有实现;
  • 基于随机数的 UUID:基于随机数或伪随机数生成。优势是实现简单,缺点是重复几率可计算;
  • 基于名字空间的 UUID(MD5 版):基于指定的名字空间/名字生成 MD5 散列值得到。优势是不同名字空间/名字下的 UUID 是唯一的,缺点是 MD5 碰撞问题,只用于向后兼容;
  • 基于名字空间的 UUID(SHA1 版):将基于名字空间的 UUID(MD5 版)中国的散列算法修改为 SHA1。优势是不同名字空间/名字下的 UUID 是唯一的,缺点是 SHA1 计算相对耗时。

UUID 的优势是性能非常高,由于是本地生成,没有网络消耗。而其也存在一些缺陷,包括不易于存储,UUID 太长,16 字节 128 位,通常以 36 长度的字符串表示;信息不安全,基于时间的 UUID 可能会造成机器的 mac 地址泄露;ID 作为 DB 主键时在特定的场景下会存在一些问题。

2.2. 数据库自增 ID

数据库自增 ID 是最常见的一种生成 ID 方式。利用数据库本身来进行设置,在全数据库内保持唯一。优势是使用简单,满足基本业务需求,天然有序;缺点是强依赖 DB,会由于数据库部署的一些特性而存在单点故障、数据一致性等问题。

针对上面介绍的数据库自增 ID 的缺陷,会存在以下两种优化方案:

  • 数据库水平拆分,设置不同的初始值和相同的步长。这样可以有效的生成集群中的唯一 ID,也大大降低 ID 生成数据库操作的负载。
  • 批量生成一批 ID。这样可以将数据库的压力减小到先前的 N 分之一,且数据库故障后仍可继续使用一段时间。此种方法详见下面的数据库号段模式介绍。

数据库自增 ID 方案的优势是非常简单,可利用现有数据库系统的功能实现;ID 号单调自增。其缺陷包括强依赖 DB,当 DB 异常时整个系统将处于不可用的状态;ID 号的生成速率取决于所使用数据库的读写性能。

2.3. Redis 生成 ID

当使用数据库来生成 ID 性能不够的时候,可以尝试使用 Redis 来生成 ID。主要使用 Redis 的原子操作 INCR 和 INCRBY 来实现。优势是不依赖于数据库,使用灵活,性能也优于数据库;而缺点则是可能要引入新的组件 Redis,如果 Redis 出现单点故障问题,则会影响序号服务的可用性。

2.4. Zookeeper 生成 ID

主要是利用 Zookeeper 的 znode 数据版本来生成序列号,可以生成 32 位和 64 位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。由于需要依赖 zookeeper,并且是多步调用 API,如果在竞争较大的情况下,可能需要考虑使用分布式锁,故此种生成唯一 ID 的方法的性能在高并发的分布式环境下不甚理想。

2.5. Snowflake 算法

snowflake(雪花算法)是一个开源的分布式 ID 生成算法,结果是一个 long 型的 ID。snowflake 算法将 64bit 划分为多段,分开来标识机器、时间等信息,具体组成结构如下图所示:

snowflake 算法的核心思想是使用 41bit 作为毫秒数,10bit 作为机器的 ID(比如其中 5 个 bit 可作为数据中心,5 个 bit 作为机器 ID),12bit 作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是 0。

snowflake 算法可以根据自身业务的需求进行一定的调整。比如估算未来的数据中心个数,每个数据中心内的机器数,以及统一毫秒内的并发数来调整在算法中所需要的 bit 数。

snowflake 算法的优势是稳定性高,不依赖于数据库等第三方系统;使用灵活方便,可以根据业务需求的特性来调整算法中的 bit 位;单机上 ID 单调自增,毫秒数在高位,自增序列在低位,整个 ID 是趋势递增的。而其也存在一定的缺陷,包括强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务处于不可用状态;ID 可能不是全局递增,虽然 ID 在单机上是递增的,但是由于涉及到分布式环境下的每个机器节点上的时钟,可能会出现不是全局递增的场景。

3. 数据库号段模式

3.1. 号段模式介绍

号段模式是当下分布式 ID 生成器的主流实现方式之一,号段模式可以理解成从数据库批量获取 ID,然后将 ID 缓存在本地,以此来提高业务获取 ID 的效率。例如,每次从数据库获取 ID 时,获取一个号段,如(1,1000],这个范围表示 1000 个 ID,业务应用在请求获取 ID 时,只需要在本地从 1 开始自增并返回,而不用每次去请求数据库,一直到本地自增到 1000 时,才去数据库重新获取新的号段,后续流程循环往复。

3.2. 美团 Leaf-segment 方案

Leaf-segment 号段模式是对直接用数据库自增 ID 充当分布式 ID 的一种优化,减少对数据库的访问频率。相当于每次从数据库批量的获取自增 ID。

Leaf-server 采用了预分发的方式生成 ID,即可以在 DB 之上挂 N 个 Server,每个 Server 启动时,都会去 DB 拿固定长度的 ID List。这样就做到了完全基于分布式的架构,同时因为 ID 是由内存分发,所以也可以做到很高效。接下来是数据持久化问题,Leaf 每次去 DB 拿固定长度的 ID List,然后把最大的 ID 持久化下来,也就是并非每个 ID 都做持久化,仅仅持久化一批 ID 中最大的那一个。其流程如下图所示:

Leaf-server 中缓存的号段耗尽之后再去数据库获取新的号段,可以大大地减轻数据库的压力。对 max_id 字段做一次 update 操作,update max_id = max_id + step,update 成功则说明新号段获取成功,新的号段范围为(max_id, max_id + step]。

为了解决从数据库获取新的号段阻塞业务获取 ID 的流程的问题,Leaf-server 中采用了异步更新的策略,同时通过双 buffer 的方式,如下图所示。通过这样一种机制可以保证无论何时 DB 出现问题,都能有一个 buffer 的号段可以正常对外提供服务,只有 DB 在一个 buffer 的下发周期内恢复,都不会影响这个 Leaf 集群的可用性。

3.3. 滴滴 Tingid 方案

Tinyid 方案是在 Leaf-segment 的算法基础上升级而来,不仅支持了数据库多主节点模式,还提供了 tinyid-client 客户端的接入方式,使用起来更加方便。

Tinyid 会将可用号段加载到内存中,并在内存中生成 ID,可用号段在首次获取 ID 时加载,如当前号段使用达到一定比例时,系统会异步的去加载下一个可用号段,以此保证内存中始终有可用号段,以便在发号服务宕机后一段时间内还有可用 ID。实现原理如下所示:

3.4. 微信序列号生成方案

微信序列号跟用户 uin 绑定,具有以下性质:递增的 64 位整形;使用每个用户独立的 64 位 sequence 的体系,而不是用一个全局的 64 位(或更高位) sequence ,很大原因是全局唯一的 sequence 会有非常严重的申请互斥问题,不容易去实现一个高性能高可靠的架构。其实现方式包含如下两个关键点:

1)步进式持久化:增加一个缓存中间层,内存中缓存最近一个分配出现的 sequence:cur_seq,以及分配上限:max_seq;分配 sequence 时,将 cur_seq++,与分配上限 max_seq 比较,如果 cur_seq > max_seq,将分配上限提升一个步长 max_seq += step,并持久化 max_seq;重启时,读出持久化的 max_seq,赋值给 cur_seq。此种处理方式可以降低持久化的硬盘 IO 次数,可以系统的整体吞吐量。

2)分号段共享存储:引入号段 section 的概念,uin 相邻的一段用户属于一个号段,共享一个 max_seq。该处理方式可以大幅减少 max_seq 数据的大小,同时可以进一步地降低 IO 次数。

微信序列号服务的系统架构图如下图所示:

4. 雪花模式

4.1. 雪花模式介绍

雪花模式实现方式详见上面介绍的 snowflake 算法。

由于雪花算法强依赖于机器时间,如果时间上的时钟发生回拨,则可能引起生成的 id 冲突的问题。解决该问题的方案如下所示:

  • 将 ID 生成交给少量服务器,然后关闭这些服务器的时钟回拨能力;
  • 当遇到时钟回拨问题时直接报错,交给上层业务来处理;
  • 如果回拨时间较短,在耗时要求范围内,比如 5ms,等待回拨时长后在生成 id 返回给业务侧;
  • 如果回拨时间很长,无法等待,可以匀出少量位作为回拨位,一旦时间回拨,将回拨位加 1,可得到不一样的 ID,2 位回拨可允许标记三次时钟较长时间的回拨,基本够使用。如果超过回拨次数,可以再选择报错或抛出异常。

4.2. 美团 Leaf-snowflake 方案

Leaf-snowflake 方案沿用 snowflake 方案的 bit 位设计,即”1+41+10+12“的方式组装 ID 号(正数位(占 1 比特)+ 时间戳(占 41 比特)+ 机器 ID(占 5 比特)+ 机房 ID(占 5 比特)+ 自增值(占 12 比特)),如下图所示:

对于 workerID 的分配,当服务集群较小时,通过配置即可;当服务集群较大时,基于 zookeeper 持久顺序节点的特性引入 zookeeper 组件配置 workerID。部署架构如下图所示:

Leaf-snowflake 方案在处理时钟回拨问题的策略如下所示:

1)服务启动时

  • 在服务启动时,首先检查自己是否写过 zookeeper leaf_forever 节点;
  • 如果写过,则用自身系统时间与 leaf_forever/${self}节点记录时间做比较,若小于则认为机器时间发生了大步长回拨,服务启动失败并告警;
  • 如果没有写过,直接创建持久节点 leaf_forever/${self},并写入自身系统时间;
  • 然后取 leaf_temporary 下的所有临时节点(所有运行中的 Leaf-snowflake 节点)的服务 IP:Port,然后通过 RPC 请求得到所有节点的系统时间,计算 sum(time)/nodeSize;
  • 如果若 abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点 leaf_temporary/${self} 维持租约;否则认为本机系统时间发生大步长偏移,启动失败并报警;
  • 每隔一段时间(3s)上报自身系统时间写入 leaf_forever/${self}。

2)服务运行时

  • 会检查时钟回拨时间是否小于 5ms,若时钟回拨时间小于等于 5ms,等待时钟回拨时间后,重新产生新的 ID;若时钟回拨时间大于 5ms,直接抛异常给到业务侧。

4.3. 百度 UidGenerator 方案

UidGenerator 方案是基于 snowflake 算法的唯一 ID 生成器。其对雪花算法的 bit 位的分配做了微调,如下图所示:

UidGenerator 方案包含以下两种实现方式:

1)DefaultUidGenerator 实现方式

DefaultUidGenerator 方式的实现要点如下所示:

  • delta seconds:在上图中用 28bit 部分表示,指当前时间与 epoch 时间的时间差,单位为秒。epoch 时间指集成 DefaultUidGenerator 生成分布式 ID 服务第一次上线的时间,可配置。
  • worker id:在上图中用 22bit 部分表示,在使用 DefaultUidGenerator 方式生成分布式 ID 的实例启动的时候,往 db 中写入一行数据得到的自增 id 值。由于 worker id 默认 22 位,允许集成 DefaultUidGenerator 生成分布式 id 的所有实例的重启次数不超过 4194303 次,否则会抛出异常
  • sequence:在上图中用 13bit 部分表示,通过 synchronized 保证线程安全;如果时间有任何的回拨,直接抛出异常;如果当前时间和上一次是同一秒时间,sequence 自增,如果同一秒内自增至超过 2^13-1,自旋等待下一秒;如果是新的一秒,sequence 从 0 开始。

DefaultUidGenerator 方式在出现任何刻度的时钟回拨时都会直接抛异常给到业务层,实现比较简单粗暴。故使用 DefaultUidGenerator 方式生成分布式 ID,需要根据业务情况和特点,调整各个字段占用的位数。

2)CachedUidGenerator 实现方式

CachedUidGenerator 的核心是利用 RingBuffer,本质上是一个数组,数组中每个项被称为 slot。CachedUidGenerator 设计了两个 RingBuffer,一个保存唯一 ID,一个保存 flag。其实现要点如下所示:

  • 自增列:UidGenerator 的 workerId 在实例每次重启时初始化,且就是数据库的自增 ID,从而完美的实现每个实例获取到的 workerId 不会有任何冲突。
  • RingBuffer:UidGenerator 不再在每次取 ID 时都实时计算分布式 ID,而是利用 RingBuffer 数据结构预先生成若干个分布式 ID 并保存。
  • 时间递增:UidGenerator 的时间类型是 AtomicLong,且通过 incrementAndGet()方法获取下一次的时间,从而脱离了对服务器时间的依赖,也就不会有时钟回拨的问题。

4.4. 基于多时间线改进的雪花算法

基于多时间线改进的雪花算法在 snowflake 基础上增加了时间线部分(1~2 位),可同时支持 2~4 条时间线并行。其对雪花算法的 bit 位的分配做了微调,如下图所示:

基于多时间线改进的雪花算法生成 ID 过程如下所示:

  • 初始时,所有时间线进度均为基准时间,随机选定一条时间线作为当前时间线;
  • 在当前时间线上生成 ID,同时推进当前时间线进度;
  • 一旦发生时钟回退,且回退距离小于一定阈值,等待时间推进直到回退前的时间,会到步骤 2 继续生成 ID;
  • 如果回退距离大于阈值,暂停当前时间线进度,选择一条合适的时间线(进度<当前时间)并切换到该时间线,回到步骤 2 继续生成 ID。如果找不到合适的时间线,报错返回。

该方案虽然通过设置时间线方式有效解决了时钟回退问题,但是削弱了 snowflake 的趋势递增特性。比较适合对于一些频繁地、小步长的时钟回退情况,即能做到全局唯一,又能很好地兼顾递增趋势。

如果你觉得文章对你有帮助,那就请作者喝杯咖啡吧☕
微信
支付宝
😀
😃
😄
😁
😆
😅
🤣
😂
🙂
🙃
😉
😊
😇
🥰
😍
🤩
😘
😗
☺️
😚
😙
🥲
😋
😛
😜
🤪
😝
🤑
🤗
🤭
🫢
🫣
🤫
🤔
🤨
😐
😑
😶
😏
😒
🙄
😬
😮‍💨
🤤
😪
😴
😷
🤒
🤕
🤢
🤮
🤧
🥵
🥶
🥴
😵
😵‍💫
🤯
🥳
🥺
😠
😡
🤬
🤯
😈
👿
💀
☠️
💩
👻
👽
👾
🤖
😺
😸
😹
😻
😼
😽
🙀
😿
😾
👋
🤚
🖐️
✋️
🖖
🫱
🫲
🫳
🫴
🫷
🫸
👌
🤌
🤏
✌️
🤞
🫰
🤟
🤘
🤙
👈️
👉️
👆️
🖕
👇️
☝️
🫵
👍️
👎️
✊️
👊
🤛
🤜
👏
🙌
👐
🤲
🤝
🙏
✍️
💅
🤳
💪
🦾
🦿
🦵
🦶
👂
🦻
👃
👶
👧
🧒
👦
👩
🧑
👨
👩‍🦱
👨‍🦱
👩‍🦰
👨‍🦰
👱‍♀️
👱‍♂️
👩‍🦳
👨‍🦳
👩‍🦲
👨‍🦲
🧔‍♀️
🧔‍♂️
👵
🧓
👴
👲
👳‍♀️
👳‍♂️
🧕
👮‍♀️
👮‍♂️
👷‍♀️
👷‍♂️
💂‍♀️
💂‍♂️
🕵️‍♀️
🕵️‍♂️
👩‍⚕️
👨‍⚕️
👩‍🌾
👨‍🌾
👩‍🍳
👨‍🍳
🐶
🐱
🐭
🐹
🐰
🦊
🐻
🐼
🐨
🐯
🦁
🐮
🐷
🐸
🐵
🐔
🐧
🐦
🦅
🦉
🐴
🦄
🐝
🪲
🐞
🦋
🐢
🐍
🦖
🦕
🐬
🦭
🐳
🐋
🦈
🐙
🦑
🦀
🦞
🦐
🐚
🐌
🦋
🐛
🦟
🪰
🪱
🦗
🕷️
🕸️
🦂
🐢
🐍
🦎
🦖
🦕
🐊
🐢
🐉
🦕
🦖
🐘
🦏
🦛
🐪
🐫
🦒
🦘
🦬
🐃
🐂
🐄
🐎
🐖
🐏
🐑
🐐
🦌
🐕
🐩
🦮
🐕‍🦺
🐈
🐈‍⬛
🐓
🦃
🦚
🦜
🦢
🦩
🕊️
🐇
🦝
🦨
🦡
🦫
🦦
🦥
🐁
🐀
🐿️
🦔
🌵
🎄
🌲
🌳
🌴
🌱
🌿
☘️
🍀
🎍
🎋
🍃
🍂
🍁
🍄
🌾
💐
🌷
🌹
🥀
🌺
🌸
🌼
🌻
🌞
🌝
🌛
🌜
🌚
🌕
🌖
🌗
🌘
🌑
🌒
🌓
🌔
🌙
🌎
🌍
🌏
🪐
💫
🌟
🔥
💥
☄️
☀️
🌤️
🌥️
🌦️
🌧️
⛈️
🌩️
🌨️
❄️
☃️
🌬️
💨
💧
💦
🌊
🍇
🍈
🍉
🍊
🍋
🍌
🍍
🥭
🍎
🍏
🍐
🍑
🍒
🍓
🥝
🍅
🥥
🥑
🍆
🥔
🥕
🌽
🌶️
🥒
🥬
🥦
🧄
🧅
🍄
🥜
🍞
🥐
🥖
🥨
🥯
🥞
🧇
🧀
🍖
🍗
🥩
🥓
🍔
🍟
🍕
🌭
🥪
🌮
🌯
🥙
🧆
🥚
🍳
🥘
🍲
🥣
🥗
🍿
🧈
🧂
🥫
🍱
🍘
🍙
🍚
🍛
🍜
🍝
🍠
🍢
🍣
🍤
🍥
🥮
🍡
🥟
🥠
🥡
🦪
🍦
🍧
🍨
🍩
🍪
🎂
🍰
🧁
🥧
🍫
🍬
🍭
🍮
🍯
🍼
🥛
🍵
🍶
🍾
🍷
🍸
🍹
🍺
🍻
🥂
🥃
🥤
🧃
🧉
🧊
🗺️
🏔️
⛰️
🌋
🏕️
🏖️
🏜️
🏝️
🏞️
🏟️
🏛️
🏗️
🏘️
🏙️
🏚️
🏠
🏡
🏢
🏣
🏤
🏥
🏦
🏨
🏩
🏪
🏫
🏬
🏭
🏯
🏰
💒
🗼
🗽
🕌
🛕
🕍
⛩️
🕋
🌁
🌃
🏙️
🌄
🌅
🌆
🌇
🌉
🎠
🎡
🎢
💈
🎪
🚂
🚃
🚄
🚅
🚆
🚇
🚈
🚉
🚊
🚝
🚞
🚋
🚌
🚍
🚎
🚐
🚑
🚒
🚓
🚔
🚕
🚖
🚗
🚘
🚙
🚚
🚛
🚜
🏎️
🏍️
🛵
🦽
🦼
🛺
🚲
🛴
🛹
🚏
🛣️
🛤️
🛢️
🚨
🚥
🚦
🚧
🛶
🚤
🛳️
⛴️
🛥️
🚢
✈️
🛩️
🛫
🛬
🪂
💺
🚁
🚟
🚠
🚡
🛰️
🚀
🛸
🧳
📱
💻
⌨️
🖥️
🖨️
🖱️
🖲️
💽
💾
📀
📼
🔍
🔎
💡
🔦
🏮
📔
📕
📖
📗
📘
📙
📚
📓
📒
📃
📜
📄
📰
🗞️
📑
🔖
🏷️
💰
💴
💵
💶
💷
💸
💳
🧾
✉️
📧
📨
📩
📤
📥
📦
📫
📪
📬
📭
📮
🗳️
✏️
✒️
🖋️
🖊️
🖌️
🖍️
📝
📁
📂
🗂️
📅
📆
🗒️
🗓️
📇
📈
📉
📊
📋
📌
📍
📎
🖇️
📏
📐
✂️
🗃️
🗄️
🗑️
🔒
🔓
🔏
🔐
🔑
🗝️
🔨
🪓
⛏️
⚒️
🛠️
🗡️
⚔️
🔫
🏹
🛡️
🔧
🔩
⚙️
🗜️
⚗️
🧪
🧫
🧬
🔬
🔭
📡
💉
🩸
💊
🩹
🩺
🚪
🛏️
🛋️
🪑
🚽
🚿
🛁
🧴
🧷
🧹
🧺
🧻
🧼
🧽
🧯
🛒
🚬
⚰️
⚱️
🗿
🏧
🚮
🚰
🚹
🚺
🚻
🚼
🚾
🛂
🛃
🛄
🛅
⚠️
🚸
🚫
🚳
🚭
🚯
🚱
🚷
📵
🔞
☢️
☣️
❤️
🧡
💛
💚
💙
💜
🖤
💔
❣️
💕
💞
💓
💗
💖
💘
💝
💟
☮️
✝️
☪️
🕉️
☸️
✡️
🔯
🕎
☯️
☦️
🛐
🆔
⚛️
🉑
☢️
☣️
📴
📳
🈶
🈚
🈸
🈺
🈷️
✴️
🆚
💮
🉐
㊙️
㊗️
🈴
🈵
🈹
🈲
🅰️
🅱️
🆎
🆑
🅾️
🆘
🛑
💢
💯
💠
♨️
🚷
🚯
🚳
🚱
🔞
📵
🚭
‼️
⁉️
🔅
🔆
🔱
⚜️
〽️
⚠️
🚸
🔰
♻️
🈯
💹
❇️
✳️
🌐
💠
Ⓜ️
🌀
💤
🏧
🚾
🅿️
🈳
🈂️
🛂
🛃
🛄
🛅
  2 条评论
冷酷到底   浙江省杭州市

11