Java8新特性之Stream流

  Java   26分钟   796浏览   0评论

你好呀,我是小邹。

以下这篇文章是关于Java8中的Stream 的详细用法,一起卷起来。

一、概述

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操

作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。

简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

特点:

1. 不是数据结构,不会保存数据。
2. 不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素)
3. 惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。

二、分类

无状态:指元素的处理不受之前元素的影响;
有状态:指该操作只有拿到所有元素之后才能继续下去。
非短路操作:指必须处理所有元素才能得到最终结果;
短路操作:指遇到某些符合条件的元素就可以得到最终结果,如 A || B,只要A为true,则无需判断B的结果。

三、具体用法

1. 流的常用创建方法

1.1 使用Collection下的 stream() 和 parallelStream() 方法

List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //获取一个顺序流
Stream<String> parallelStream = list.parallelStream(); //获取一个并行流

1.2 使用Arrays 中的 stream() 方法,将数组转成流

Integer[] nums = new Integer[10];
Stream<Integer> stream = Arrays.stream(nums);

1.3 使用Stream中的静态方法:of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1,2,3,4,5,6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 2).limit(6);
stream2.forEach(System.out::println); // 0 2 4 6 8 10

Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
stream3.forEach(System.out::println);

1.4 使用 BufferedReader.lines() 方法,将每行内容转成流

BufferedReader reader = new BufferedReader(new FileReader("F:\\test_stream.txt"));
Stream<String> lineStream = reader.lines();
lineStream.forEach(System.out::println);

1.5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流

Pattern pattern = Pattern.compile(",");
Stream<String> stringStream = pattern.splitAsStream("a,b,c,d");
stringStream.forEach(System.out::println);

2. 流的中间操作

2.1 筛选与切片

filter:过滤流中的某些元素

limit(n):获取n个元素

skip(n):跳过n元素,配合limit(n)可实现分页

distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素

Stream<Integer> stream = Stream.of(6, 4, 6, 7, 3, 9, 8, 10, 12, 14, 14);

Stream<Integer> newStream = stream.filter(s -> s > 5) //6 6 7 9 8 10 12 14 14
        .distinct() //6 7 9 8 10 12 14
        .skip(2) //9 8 10 12 14
        .limit(2); //9 8
newStream.forEach(System.out::println);

2.2 映射
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。

flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

List<String> list = Arrays.asList("a,b,c", "1,2,3");

//将每个元素转成一个新的且不带逗号的元素
Stream<String> s1 = list.stream().map(s -> s.replaceAll(",", ""));
s1.forEach(System.out::println); // abc  123

Stream<String> s3 = list.stream().flatMap(s -> {
    //将每个元素转换成一个stream
    String[] split = s.split(",");
    Stream<String> s2 = Arrays.stream(split);
    return s2;
});
s3.forEach(System.out::println); // a b c 1 2 3

2.3 排序
sorted():自然排序,流中元素需实现Comparable接口
sorted(Comparator com):定制排序,自定义Comparator排序器

List<String> list = Arrays.asList("aa", "ff", "dd");
//String 类自身已实现Compareable接口
list.stream().sorted().forEach(System.out::println);// aa dd ff

Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
Student s3 = new Student("aa", 30);
Student s4 = new Student("dd", 40);
List<Student> studentList = Arrays.asList(s1, s2, s3, s4);

//自定义排序:先按姓名升序,姓名相同则按年龄升序
studentList.stream().sorted(
        (o1, o2) -> {
            if (o1.getName().equals(o2.getName())) {
                return o1.getAge() - o2.getAge();
            } else {
                return o1.getName().compareTo(o2.getName());
            }
        }
).forEach(System.out::println);

2.4 消费
peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。

Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
List<Student> studentList = Arrays.asList(s1, s2);

studentList.stream()
        .peek(o -> o.setAge(100))
        .forEach(System.out::println);   

//结果:
Student{name='aa', age=100}
Student{name='bb', age=100}

3. 流的终止操作

3.1 匹配、聚合操作
allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false
noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false
anyMatch:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false
findFirst:返回流中第一个元素
findAny:返回流中的任意元素
count:返回流中元素的总个数
max:返回流中元素最大值
min:返回流中元素最小值

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);

boolean allMatch = list.stream().allMatch(e -> e > 10); //false
boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
boolean anyMatch = list.stream().anyMatch(e -> e > 4);  //true

Integer findFirst = list.stream().findFirst().get(); //1
Integer findAny = list.stream().findAny().get(); //1

long count = list.stream().count(); //5
Integer max = list.stream().max(Integer::compareTo).get(); //5
Integer min = list.stream().min(Integer::compareTo).get(); //1

3.2 规约操作
Optional:第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
T reduce:流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。
U reduce:在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。在并行流(parallelStream)中,我们知道流被fork join出多个线程进行执行,此时每个线程的执行流程就跟第二个方法reduce(identity,accumulator)一样,而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法reduce(accumulator)流程进行规约。

//经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24);

Integer v = list.stream().reduce((x1, x2) -> x1 + x2).get();
System.out.println(v);   // 300

Integer v1 = list.stream().reduce(10, (x1, x2) -> x1 + x2);
System.out.println(v1);  //310

Integer v2 = list.stream().reduce(0,
        (x1, x2) -> {
            System.out.println("stream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        (x1, x2) -> {
            System.out.println("stream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v2); // -300

Integer v3 = list.parallelStream().reduce(0,
        (x1, x2) -> {
            System.out.println("parallelStream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        (x1, x2) -> {
            System.out.println("parallelStream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v3); //197474048

3.3 收集操作
collect:接收一个Collector实例,将流中元素收集成另外一个数据结构。

Collector 是一个接口,有以下5个抽象方法:

Supplier supplier():创建一个结果容器A

BiConsumer accumulator():消费型接口,第一个参数为容器A,第二个参数为流中元素T。

BinaryOperator combiner():函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各

个子进程的运行结果(accumulator函数操作后的容器A)进行合并。

Function finisher():函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。

Set characteristics():返回一个不可变的Set集合,用来表明该Collector的特征。

有以下三个特征:
CONCURRENT:表示此收集器支持并发。(官方文档还有其他描述,不作过多翻译)
UNORDERED:表示该收集操作不会保留流中元素原有的顺序。
IDENTITY_FINISH:表示finisher参数只是标识而已,可忽略。

3.3.1 Collector 工具库:Collectors

Student s1 = new Student("aa", 10,1);
Student s2 = new Student("bb", 20,2);
Student s3 = new Student("cc", 10,3);
List<Student> list = Arrays.asList(s1, s2, s3);

//装成list
List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10]

//转成set
Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10]

//转成map,注:key不能相同,否则报错
Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10}

//字符串分隔符连接
String joinName = list.stream().map(Student::getName).collect(Collectors.joining(",", "(", ")")); // (aa,bb,cc)

//聚合操作
//1.学生总数
Long count = list.stream().collect(Collectors.counting()); // 3
//2.最大年龄 (最小的minBy同理)
Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20
//3.所有人的年龄
Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40
//4.平均年龄
Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334
// 带上以上所有方法
DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge));
System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());

//分组
Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge));
//多重分组,先根据类型分再根据年龄分
Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge)));

//分区
//分成两部分,一部分大于10岁,一部分小于等于10岁
Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));

//规约
Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40

3.3.2 Collectors.toList() 解析

//toList 源码
public static <T> Collector<T, ?, List<T>> toList() {
    return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
            (left, right) -> {
                left.addAll(right);
                return left;
            }, CH_ID);
}

//为了更好地理解,我们转化一下源码中的lambda表达式
public <T> Collector<T, ?, List<T>> toList() {
    Supplier<List<T>> supplier = () -> new ArrayList();
    BiConsumer<List<T>, T> accumulator = (list, t) -> list.add(t);
    BinaryOperator<List<T>> combiner = (list1, list2) -> {
        list1.addAll(list2);
        return list1;
    };
    Function<List<T>, List<T>> finisher = (list) -> list;
    Set<Collector.Characteristics> characteristics = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH));

    return new Collector<T, List<T>, List<T>>() {
        @Override
        public Supplier supplier() {
            return supplier;
        }

        @Override
        public BiConsumer accumulator() {
            return accumulator;
        }

        @Override
        public BinaryOperator combiner() {
            return combiner;
        }

        @Override
        public Function finisher() {
            return finisher;
        }

        @Override
        public Set<Characteristics> characteristics() {
            return characteristics;
        }
    };

}
如果你觉得文章对你有帮助,那就请作者喝杯咖啡吧☕
微信
支付宝
😀
😃
😄
😁
😆
😅
🤣
😂
🙂
🙃
😉
😊
😇
🥰
😍
🤩
😘
😗
☺️
😚
😙
🥲
😋
😛
😜
🤪
😝
🤑
🤗
🤭
🫢
🫣
🤫
🤔
🤨
😐
😑
😶
😏
😒
🙄
😬
😮‍💨
🤤
😪
😴
😷
🤒
🤕
🤢
🤮
🤧
🥵
🥶
🥴
😵
😵‍💫
🤯
🥳
🥺
😠
😡
🤬
🤯
😈
👿
💀
☠️
💩
👻
👽
👾
🤖
😺
😸
😹
😻
😼
😽
🙀
😿
😾
👋
🤚
🖐️
✋️
🖖
🫱
🫲
🫳
🫴
🫷
🫸
👌
🤌
🤏
✌️
🤞
🫰
🤟
🤘
🤙
👈️
👉️
👆️
🖕
👇️
☝️
🫵
👍️
👎️
✊️
👊
🤛
🤜
👏
🙌
👐
🤲
🤝
🙏
✍️
💅
🤳
💪
🦾
🦿
🦵
🦶
👂
🦻
👃
👶
👧
🧒
👦
👩
🧑
👨
👩‍🦱
👨‍🦱
👩‍🦰
👨‍🦰
👱‍♀️
👱‍♂️
👩‍🦳
👨‍🦳
👩‍🦲
👨‍🦲
🧔‍♀️
🧔‍♂️
👵
🧓
👴
👲
👳‍♀️
👳‍♂️
🧕
👮‍♀️
👮‍♂️
👷‍♀️
👷‍♂️
💂‍♀️
💂‍♂️
🕵️‍♀️
🕵️‍♂️
👩‍⚕️
👨‍⚕️
👩‍🌾
👨‍🌾
👩‍🍳
👨‍🍳
🐶
🐱
🐭
🐹
🐰
🦊
🐻
🐼
🐨
🐯
🦁
🐮
🐷
🐸
🐵
🐔
🐧
🐦
🦅
🦉
🐴
🦄
🐝
🪲
🐞
🦋
🐢
🐍
🦖
🦕
🐬
🦭
🐳
🐋
🦈
🐙
🦑
🦀
🦞
🦐
🐚
🐌
🦋
🐛
🦟
🪰
🪱
🦗
🕷️
🕸️
🦂
🐢
🐍
🦎
🦖
🦕
🐊
🐢
🐉
🦕
🦖
🐘
🦏
🦛
🐪
🐫
🦒
🦘
🦬
🐃
🐂
🐄
🐎
🐖
🐏
🐑
🐐
🦌
🐕
🐩
🦮
🐕‍🦺
🐈
🐈‍⬛
🐓
🦃
🦚
🦜
🦢
🦩
🕊️
🐇
🦝
🦨
🦡
🦫
🦦
🦥
🐁
🐀
🐿️
🦔
🌵
🎄
🌲
🌳
🌴
🌱
🌿
☘️
🍀
🎍
🎋
🍃
🍂
🍁
🍄
🌾
💐
🌷
🌹
🥀
🌺
🌸
🌼
🌻
🌞
🌝
🌛
🌜
🌚
🌕
🌖
🌗
🌘
🌑
🌒
🌓
🌔
🌙
🌎
🌍
🌏
🪐
💫
🌟
🔥
💥
☄️
☀️
🌤️
🌥️
🌦️
🌧️
⛈️
🌩️
🌨️
❄️
☃️
🌬️
💨
💧
💦
🌊
🍇
🍈
🍉
🍊
🍋
🍌
🍍
🥭
🍎
🍏
🍐
🍑
🍒
🍓
🥝
🍅
🥥
🥑
🍆
🥔
🥕
🌽
🌶️
🥒
🥬
🥦
🧄
🧅
🍄
🥜
🍞
🥐
🥖
🥨
🥯
🥞
🧇
🧀
🍖
🍗
🥩
🥓
🍔
🍟
🍕
🌭
🥪
🌮
🌯
🥙
🧆
🥚
🍳
🥘
🍲
🥣
🥗
🍿
🧈
🧂
🥫
🍱
🍘
🍙
🍚
🍛
🍜
🍝
🍠
🍢
🍣
🍤
🍥
🥮
🍡
🥟
🥠
🥡
🦪
🍦
🍧
🍨
🍩
🍪
🎂
🍰
🧁
🥧
🍫
🍬
🍭
🍮
🍯
🍼
🥛
🍵
🍶
🍾
🍷
🍸
🍹
🍺
🍻
🥂
🥃
🥤
🧃
🧉
🧊
🗺️
🏔️
⛰️
🌋
🏕️
🏖️
🏜️
🏝️
🏞️
🏟️
🏛️
🏗️
🏘️
🏙️
🏚️
🏠
🏡
🏢
🏣
🏤
🏥
🏦
🏨
🏩
🏪
🏫
🏬
🏭
🏯
🏰
💒
🗼
🗽
🕌
🛕
🕍
⛩️
🕋
🌁
🌃
🏙️
🌄
🌅
🌆
🌇
🌉
🎠
🎡
🎢
💈
🎪
🚂
🚃
🚄
🚅
🚆
🚇
🚈
🚉
🚊
🚝
🚞
🚋
🚌
🚍
🚎
🚐
🚑
🚒
🚓
🚔
🚕
🚖
🚗
🚘
🚙
🚚
🚛
🚜
🏎️
🏍️
🛵
🦽
🦼
🛺
🚲
🛴
🛹
🚏
🛣️
🛤️
🛢️
🚨
🚥
🚦
🚧
🛶
🚤
🛳️
⛴️
🛥️
🚢
✈️
🛩️
🛫
🛬
🪂
💺
🚁
🚟
🚠
🚡
🛰️
🚀
🛸
🧳
📱
💻
⌨️
🖥️
🖨️
🖱️
🖲️
💽
💾
📀
📼
🔍
🔎
💡
🔦
🏮
📔
📕
📖
📗
📘
📙
📚
📓
📒
📃
📜
📄
📰
🗞️
📑
🔖
🏷️
💰
💴
💵
💶
💷
💸
💳
🧾
✉️
📧
📨
📩
📤
📥
📦
📫
📪
📬
📭
📮
🗳️
✏️
✒️
🖋️
🖊️
🖌️
🖍️
📝
📁
📂
🗂️
📅
📆
🗒️
🗓️
📇
📈
📉
📊
📋
📌
📍
📎
🖇️
📏
📐
✂️
🗃️
🗄️
🗑️
🔒
🔓
🔏
🔐
🔑
🗝️
🔨
🪓
⛏️
⚒️
🛠️
🗡️
⚔️
🔫
🏹
🛡️
🔧
🔩
⚙️
🗜️
⚗️
🧪
🧫
🧬
🔬
🔭
📡
💉
🩸
💊
🩹
🩺
🚪
🛏️
🛋️
🪑
🚽
🚿
🛁
🧴
🧷
🧹
🧺
🧻
🧼
🧽
🧯
🛒
🚬
⚰️
⚱️
🗿
🏧
🚮
🚰
🚹
🚺
🚻
🚼
🚾
🛂
🛃
🛄
🛅
⚠️
🚸
🚫
🚳
🚭
🚯
🚱
🚷
📵
🔞
☢️
☣️
❤️
🧡
💛
💚
💙
💜
🖤
💔
❣️
💕
💞
💓
💗
💖
💘
💝
💟
☮️
✝️
☪️
🕉️
☸️
✡️
🔯
🕎
☯️
☦️
🛐
🆔
⚛️
🉑
☢️
☣️
📴
📳
🈶
🈚
🈸
🈺
🈷️
✴️
🆚
💮
🉐
㊙️
㊗️
🈴
🈵
🈹
🈲
🅰️
🅱️
🆎
🆑
🅾️
🆘
🛑
💢
💯
💠
♨️
🚷
🚯
🚳
🚱
🔞
📵
🚭
‼️
⁉️
🔅
🔆
🔱
⚜️
〽️
⚠️
🚸
🔰
♻️
🈯
💹
❇️
✳️
🌐
💠
Ⓜ️
🌀
💤
🏧
🚾
🅿️
🈳
🈂️
🛂
🛃
🛄
🛅
  0 条评论