插入排序

  算法   4分钟   699浏览   0评论

1.插入排序概念

将数组分为两个区域,排序区域和未排序区域,每一轮从未排序的区域中选取第一个元素,插入到排序区域。(需保证顺序)
重复以上步骤,直至数组有序。
举个例子:

int[] a = {9, 3, 7, 2, 5, 8, 1, 4};

刚开始选取第一个元素即9为排序区
第一轮选取到3,因为3<9,故3插入到9前面,此时排序区为{3,9}
第二轮选取到7,因为3<7<9,故插入至它们中间,此时排序区为{3,7,9};
......
以此类推

2.编程思路

1. 定义 i 表示待插入元素的索引,从1开始
2. 定义 t 表示待插入的元素值
3. 定义 j 表示已排序区域的最后一个元素索引
4. 如果待插入元素小于排序区域中的最后一个,将原最后一个往后移一位

3.代码实现

package array;

import java.util.Arrays;

/**
 * @author: 邹祥发
 * @date: 2021/10/15 13:21
 * 插入排序
 */
public class InsertSort {
    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 5, 8, 1, 4};
        insert(a);
    }

    private static void insert(int[] a) {
        // i 表示待插入元素的索引,从1开始
        for (int i = 1; i < a.length; i++) {
            // t 表示待插入的元素值
            int t = a[i];
            // j 表示已排序区域的最后一个元素索引
            int j = i - 1;
            while (j >= 0) {
                if (t < a[j]) {
                    // 待插入元素小于排序区域中的最后一个,将原最后一个往后移一位
                    a[j + 1] = a[j];
                } else {
                    // 退出循环,减少比较次数
                    break;
                }
                j--;
            }
            a[j + 1] = t;
            System.out.println(Arrays.toString(a));
        }
    }
}

输出结果:
[3, 9, 7, 2, 5, 8, 1, 4]
[3, 7, 9, 2, 5, 8, 1, 4]
[2, 3, 7, 9, 5, 8, 1, 4]
[2, 3, 5, 7, 9, 8, 1, 4]
[2, 3, 5, 7, 8, 9, 1, 4]
[1, 2, 3, 5, 7, 8, 9, 4]
[1, 2, 3, 4, 5, 7, 8, 9]

4.优化

优化方式:

  1. 待插入元素进行比较时,遇到比自己小的元素,就代表找到了插入位置,无需进行后续比较
  2. 插入时可以直接移动元素,而不是交换元素
    上述代码已经进行优化。

5.插入排序与选择排序的区别

  1. 二者时间复杂度都是O(n²)
  2. 大部分情况下,插入都优于选择
  3. 有序集合插入排序的时间复杂度为O(n)
    4. 插入属于稳定排序算法,选择属于不稳定排序。

稳定排序与不稳定排序的区别?
https://www.hqxiaozou.top/post/9ucgtpg6hga

6.例题演示

如果你觉得文章对你有帮助,那就请作者喝杯咖啡吧☕
微信
支付宝
😀
😃
😄
😁
😆
😅
🤣
😂
🙂
🙃
😉
😊
😇
🥰
😍
🤩
😘
😗
☺️
😚
😙
🥲
😋
😛
😜
🤪
😝
🤑
🤗
🤭
🫢
🫣
🤫
🤔
🤨
😐
😑
😶
😏
😒
🙄
😬
😮‍💨
🤤
😪
😴
😷
🤒
🤕
🤢
🤮
🤧
🥵
🥶
🥴
😵
😵‍💫
🤯
🥳
🥺
😠
😡
🤬
🤯
😈
👿
💀
☠️
💩
👻
👽
👾
🤖
😺
😸
😹
😻
😼
😽
🙀
😿
😾
👋
🤚
🖐️
✋️
🖖
🫱
🫲
🫳
🫴
🫷
🫸
👌
🤌
🤏
✌️
🤞
🫰
🤟
🤘
🤙
👈️
👉️
👆️
🖕
👇️
☝️
🫵
👍️
👎️
✊️
👊
🤛
🤜
👏
🙌
👐
🤲
🤝
🙏
✍️
💅
🤳
💪
🦾
🦿
🦵
🦶
👂
🦻
👃
👶
👧
🧒
👦
👩
🧑
👨
👩‍🦱
👨‍🦱
👩‍🦰
👨‍🦰
👱‍♀️
👱‍♂️
👩‍🦳
👨‍🦳
👩‍🦲
👨‍🦲
🧔‍♀️
🧔‍♂️
👵
🧓
👴
👲
👳‍♀️
👳‍♂️
🧕
👮‍♀️
👮‍♂️
👷‍♀️
👷‍♂️
💂‍♀️
💂‍♂️
🕵️‍♀️
🕵️‍♂️
👩‍⚕️
👨‍⚕️
👩‍🌾
👨‍🌾
👩‍🍳
👨‍🍳
🐶
🐱
🐭
🐹
🐰
🦊
🐻
🐼
🐨
🐯
🦁
🐮
🐷
🐸
🐵
🐔
🐧
🐦
🦅
🦉
🐴
🦄
🐝
🪲
🐞
🦋
🐢
🐍
🦖
🦕
🐬
🦭
🐳
🐋
🦈
🐙
🦑
🦀
🦞
🦐
🐚
🐌
🦋
🐛
🦟
🪰
🪱
🦗
🕷️
🕸️
🦂
🐢
🐍
🦎
🦖
🦕
🐊
🐢
🐉
🦕
🦖
🐘
🦏
🦛
🐪
🐫
🦒
🦘
🦬
🐃
🐂
🐄
🐎
🐖
🐏
🐑
🐐
🦌
🐕
🐩
🦮
🐕‍🦺
🐈
🐈‍⬛
🐓
🦃
🦚
🦜
🦢
🦩
🕊️
🐇
🦝
🦨
🦡
🦫
🦦
🦥
🐁
🐀
🐿️
🦔
🌵
🎄
🌲
🌳
🌴
🌱
🌿
☘️
🍀
🎍
🎋
🍃
🍂
🍁
🍄
🌾
💐
🌷
🌹
🥀
🌺
🌸
🌼
🌻
🌞
🌝
🌛
🌜
🌚
🌕
🌖
🌗
🌘
🌑
🌒
🌓
🌔
🌙
🌎
🌍
🌏
🪐
💫
🌟
🔥
💥
☄️
☀️
🌤️
🌥️
🌦️
🌧️
⛈️
🌩️
🌨️
❄️
☃️
🌬️
💨
💧
💦
🌊
🍇
🍈
🍉
🍊
🍋
🍌
🍍
🥭
🍎
🍏
🍐
🍑
🍒
🍓
🥝
🍅
🥥
🥑
🍆
🥔
🥕
🌽
🌶️
🥒
🥬
🥦
🧄
🧅
🍄
🥜
🍞
🥐
🥖
🥨
🥯
🥞
🧇
🧀
🍖
🍗
🥩
🥓
🍔
🍟
🍕
🌭
🥪
🌮
🌯
🥙
🧆
🥚
🍳
🥘
🍲
🥣
🥗
🍿
🧈
🧂
🥫
🍱
🍘
🍙
🍚
🍛
🍜
🍝
🍠
🍢
🍣
🍤
🍥
🥮
🍡
🥟
🥠
🥡
🦪
🍦
🍧
🍨
🍩
🍪
🎂
🍰
🧁
🥧
🍫
🍬
🍭
🍮
🍯
🍼
🥛
🍵
🍶
🍾
🍷
🍸
🍹
🍺
🍻
🥂
🥃
🥤
🧃
🧉
🧊
🗺️
🏔️
⛰️
🌋
🏕️
🏖️
🏜️
🏝️
🏞️
🏟️
🏛️
🏗️
🏘️
🏙️
🏚️
🏠
🏡
🏢
🏣
🏤
🏥
🏦
🏨
🏩
🏪
🏫
🏬
🏭
🏯
🏰
💒
🗼
🗽
🕌
🛕
🕍
⛩️
🕋
🌁
🌃
🏙️
🌄
🌅
🌆
🌇
🌉
🎠
🎡
🎢
💈
🎪
🚂
🚃
🚄
🚅
🚆
🚇
🚈
🚉
🚊
🚝
🚞
🚋
🚌
🚍
🚎
🚐
🚑
🚒
🚓
🚔
🚕
🚖
🚗
🚘
🚙
🚚
🚛
🚜
🏎️
🏍️
🛵
🦽
🦼
🛺
🚲
🛴
🛹
🚏
🛣️
🛤️
🛢️
🚨
🚥
🚦
🚧
🛶
🚤
🛳️
⛴️
🛥️
🚢
✈️
🛩️
🛫
🛬
🪂
💺
🚁
🚟
🚠
🚡
🛰️
🚀
🛸
🧳
📱
💻
⌨️
🖥️
🖨️
🖱️
🖲️
💽
💾
📀
📼
🔍
🔎
💡
🔦
🏮
📔
📕
📖
📗
📘
📙
📚
📓
📒
📃
📜
📄
📰
🗞️
📑
🔖
🏷️
💰
💴
💵
💶
💷
💸
💳
🧾
✉️
📧
📨
📩
📤
📥
📦
📫
📪
📬
📭
📮
🗳️
✏️
✒️
🖋️
🖊️
🖌️
🖍️
📝
📁
📂
🗂️
📅
📆
🗒️
🗓️
📇
📈
📉
📊
📋
📌
📍
📎
🖇️
📏
📐
✂️
🗃️
🗄️
🗑️
🔒
🔓
🔏
🔐
🔑
🗝️
🔨
🪓
⛏️
⚒️
🛠️
🗡️
⚔️
🔫
🏹
🛡️
🔧
🔩
⚙️
🗜️
⚗️
🧪
🧫
🧬
🔬
🔭
📡
💉
🩸
💊
🩹
🩺
🚪
🛏️
🛋️
🪑
🚽
🚿
🛁
🧴
🧷
🧹
🧺
🧻
🧼
🧽
🧯
🛒
🚬
⚰️
⚱️
🗿
🏧
🚮
🚰
🚹
🚺
🚻
🚼
🚾
🛂
🛃
🛄
🛅
⚠️
🚸
🚫
🚳
🚭
🚯
🚱
🚷
📵
🔞
☢️
☣️
❤️
🧡
💛
💚
💙
💜
🖤
💔
❣️
💕
💞
💓
💗
💖
💘
💝
💟
☮️
✝️
☪️
🕉️
☸️
✡️
🔯
🕎
☯️
☦️
🛐
🆔
⚛️
🉑
☢️
☣️
📴
📳
🈶
🈚
🈸
🈺
🈷️
✴️
🆚
💮
🉐
㊙️
㊗️
🈴
🈵
🈹
🈲
🅰️
🅱️
🆎
🆑
🅾️
🆘
🛑
💢
💯
💠
♨️
🚷
🚯
🚳
🚱
🔞
📵
🚭
‼️
⁉️
🔅
🔆
🔱
⚜️
〽️
⚠️
🚸
🔰
♻️
🈯
💹
❇️
✳️
🌐
💠
Ⓜ️
🌀
💤
🏧
🚾
🅿️
🈳
🈂️
🛂
🛃
🛄
🛅
  0 条评论